ARTIFICIAL INTELLIGENCE

104[™] Scientific Assembly and Annual Meeting Radiological Society of North America McCormick Place, Chicago

November 25-30 Meeting.RSNA.org #RSNA18

Accreditation and Designation Statements

The Radiological Society of North America (RSNA®) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The RSNA designates this live activity for a maximum of 99.25 AMA PRA Category 1 Credits.™ Physicians should claim only the credit commensurate with the extent of their participation in the activity. The Commission on Accreditation of Medical Physics Education Program (CAMPEP) has approved the direct transfer of AMA PRA Category 1 Credit™ to MPCEC on a credit-for-credit basis for medical physicists.

Corporate Symposium

Please refer to each course description in the online program to determine if CME credit is offered for the session. Instructions on claiming credit will be provided during the course. CME credit for the Corporate Symposiums will be provided through a third party provider and not through RSNA. Program information is subject to change. For the most up-to-date information, please use your Meeting App or visit Meeting, RSNA.org.

Machine Learning Showcase and Theater

Located in the North Hall, the Machine Learning Showcase is an exciting centerpiece of the exhibit halls. Here you'll find nearly 80 companies focusing on the latest developments in Al and ML software and products. Plus the Machine Learning Theater features 20-minute industry presentations daily from 11 AM to 2 PM on the latest hot topics. See inside for a complete list of presentations or visit *Meeting.RSNA.org*.

Program information is subject to change. For the most up-to-date information, please use your Meeting App or visit *Meeting.RSNA.org*.

Walk Through The Week

SUND	AY,	NOV	25,	2018	
8.30	ΔM _	4.00	РМ		

Demonstrations

RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute

Session Al001-SU. Al Community, Learning Center

8:30-10:15 AM

Plenary Sessions

Opening Session

Session PS10 Arie Crown Theater

10:45 AM-12:15 PM

Scientific Papers Sessions

Gastrointestinal (Machine Learning)

Science Session with Keynote: Informatics (Artificial Intelligence in Radiology: Cutting Edge Deep-Learning)

11:00-11:20 AM

Showcase Presentations

Machine Learning Theater: Deep Imaging: What Will be the Impact of AI-empowered Image Reconstruction, Diagnosis and Prognosis?: Presented by Quantib

Session ML11....Machine Learning Showcase North Hall

11:30-11:50 AM

Showcase Presentations

Machine Learning Theater: icobrain - Adding AI to the brAIn: Presented by icometrix

Session ML12 . . . Machine Learning Showcase North Hall

12:00-12:20 PM

Showcase Presentations

Machine Learning Theater: Real Time 3D Radiology Portable Platform: Presented by AlExplore

Session ML13 ... Machine Learning Showcase North Hall

12:30-1:00 PM

Posters and Exhibits: Discussions

Artificial Intelligence Sunday Poster Discussions

Session AIS-SUA AI Community, Learning Center

12:30-12:50 PM

Showcase Presentations

Machine Learning Theater: QUIBIM Precision 3.0: Al as a Means, Not an End, For Imaging Biomarkers Integration in

Clinical Practice: Presented by QUIBIM

Session ML14 . . . Machine Learning Showcase North Hall

1:00-1:30 PM

Posters and Exhibits: Discussions

Artificial Intelligence Sunday Poster Discussions

Session AIS-SUB Al Community, Learning Center

1:30-1:50 PM

Showcase Presentations

Machine Learning Theater: Using AI within Existing Radiology Workflows at University of PA Health System: Presented by Nuance Communications

Session ML16 . . . Machine Learning Showcase North Hall

2:00-3:30 PM

Educational Courses

Deep Learning in Radiology: How Do We Do It?

MONDAY, NOV 26, 2018

8:30 AM-4:00 PM

Demonstrations

RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute

Session Al001-MO Al Community, Learning Center

8:30 AM-12:00 PM

Educational Courses

Neuroradiology Series: Brain Tumors

Course RC205.....

Breast Series: Hot Topics (Supported by an Unrestricted Educational Grant from Hologic)

Course RC215 Arie Crown Theater

8:30-10:00 AM

Educational Courses

Preparing your Radiology Practice and IT Department for Big Data

Course RC253.....

10:30 AM-12:00 PM

Scientific Papers Sessions

Chest (Lung Cancer Screening) Session SSC03E451A
Science Session with Keynote: Genitourinary (New Techniques for Renal Imaging) Session SSC07
Science Session with Keynote: Informatics (Artificial Intelligence in Radiology: Bleeding Edge) Session SSC09
Physics (MR: New Techniques, Systems, Evaluation)

11:00-11:20 AM

Showcase Presentations

Session SSC12

Machine Learning Theater: Artificial Intelligence: Implications for Advanced Imaging and Precision Medicine: Presented by Siemens Healthineers

Session ML21 . . . Machine Learning Showcase North Hall

11:30-11:50 AM

Showcase Presentations

Machine Learning Theater: Adaptive Intelligence and Radiologist Efficiency: Presented by Philips

Session ML22 . . . Machine Learning Showcase North Hall

12:00-12:20 PM

Showcase Presentations

Machine Learning Theater: Al Improves Imaging Workflow for MR and PET Exams: Faster, Safer, and Smarter: Presented by Subtle Medical

Session ML23 . . . Machine Learning Showcase North Hall

12:15-12:45 PM

Posters and Exhibits: Discussions

Artificial Intelligence Monday Poster Discussions

Session AIS-MOA Al Community, Learning Center

12:30-2:00 PM

Educational Courses

Introduction to Machine Learning and Texture Analysis for Lesion Characterization (Hands-on)

12:30-12:50 PM

Showcase Presentations

Machine Learning Theater: Actionable Intelligence and the Future of Precision Health: Presented by CorTechs Labs

Session ML24 . . . Machine Learning Showcase North Hall

12:45–1:15 PM Posters and Exhibits: Discussions Artificial Intelligence Monday Poster Discussions Session AIS-MOBAI Community, Learning Center
1:00-1:20 PM Showcase Presentations Machine Learning Theater: Al: Fad or Forever: Presented by MaxQ Al Session ML25Machine Learning Showcase North Hall
1:30-3:00 PM Educational Courses Molecular Imaging Symposium: Neurologic MI Applications Course MSMI23S405AB
1:30-2:30 PM Scientific Papers Sessions BOOST: Head and Neck-Science Session Session MSR023
1:30-1:50 PM Showcase Presentations Machine Learning Theater: Medical Imaging: Challenges and Opportunities: Presented by Google Cloud Session ML26Machine Learning Showcase North Hall
2:00-3:30 PM Corporate Symposium Al Innovation in High Resolution Imaging: Presented by Canon Medical Systems Session CS23
2:00-3:30 PM Showcase Presentations Machine Learning Theater: ML Pneumonia Detection Challenge Recognition Machine Learning Showcase North Hall
2:30-4:00 PM Educational Courses Clinical Decision Support: From Theory to Clinical Practice Course RCC24S501ABC
3:00-4:00 PM Scientific Papers Sessions Cardiac (MRI: General Topics)

Session SSE04...... N226

Session SSE11.....S102CD

Genitourinary (Imaging of Renal Stones)

Informatics (Artificial Intelligence in Radiology: More Cutting-Edge Deep Learning) Session SSE14
Neuroradiology/Head and Neck (Thyroid and Parathyroid Imaging) Session SSE18
Physics (Breast X-Ray Imaging) Session SSE23 S502AB
4:30–6:00 PM Educational Courses Special Interest Session: Demystifying Machine Learning and Artificial Intelligence for the Radiologist Session SPSI24
TUESDAY, NOV 27, 2018 8:30 AM-4:00 PM Demonstrations RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute Session Al001-TUAl Community, Learning Center
8:30 – 10:00 AM Educational Courses Quality Improvement Symposium: Value in Imaging 1: Value in Radiology Course MSQI31
8:30 AM-12:00 PM Educational Courses Neuroradiology Series: Artificial Intelligence in Neuroradiology Course RC305
9:00–10:00 AM Expanding Precision Medicine along Clinical Pathways with AI Powered Decision Support: Presented by Siemens Healthineers Session CS32 S102AB
9:00–10:30 AM Corporate Symposiums Artificial Intelligence: Impact and Implications to Radiology: Presented by Philips Healthcare Session CS31

Medical Imaging: The Path Forward: Presented by Google Cloud Session CS33
10:30 AM-12:00 PM Scientific Papers Sessions Cardiac (Coronary Atherosclerosis) Session SSG02
Chest (Lung Nodule) Session SSG03S504AB
Informatics (Artificial Intelligence in Radiology: No Pixels or Fake Pixels) Session SSG06
Musculoskeletal (Machine Learning and Artificial Intelligence) Session SSG08
Physics (CAD/Machine Learning) Session SSG13S404AB
11:30 – 11:50 AM Showcase Presentations Machine Learning Theater: Cloud and Machine Learning are Improving Workflows and Accuracy Across the Enterprise: Presented by ARTERYS, Inc. Session ML32 Machine Learning Showcase North Hall
12:00–12:20 PM Showcase Presentations Machine Learning Theater: Finding a Similar Case to Understand Yours-The Impact of Search on Clinical Radiology: Presented by contextflow Session ML33Machine Learning Showcase North Hall
12:15–12:45 PM Posters and Exhibits: Discussions Artificial Intelligence Tuesday Poster Discussions Session AIS-TUA AI Community, Learning Center
12:30–1:30 PM Lunch and Learns Lunch and Learn: Real-World Deployment of Deep Learning for Breast Cancer Screening: Presented by Kheiron Medical Technologies (invite-only) Session LL23

12:30-12:50 PM

Showcase Presentations

Machine Learning Theater: The Hype, the Reality, and the Global Landscape of Medical Al: Presented by Infervision Session ML34...Machine Learning Showcase North Hall

12:45-1:15 PM

Posters and Exhibits: Discussions

Artificial Intelligence Tuesday Poster Discussions

Session AIS-TUB AI Community, Learning Center

1:00-1:20 PM

Showcase Presentations

Machine Learning Theater: Human + Machine: The Future of Al Augmented Radiology: Presented by Enlitic Session ML35...Machine Learning Showcase North Hall

Session MLSS...Machine Learning Showcase North Hat

1:30-1:50 PM

Showcase Presentations

Machine Learning Theater: How Al Can Improve Diagnostic Performance and Reduce Reading Time in Breast Tomosynthesis: Presented by iCAD

Session ML36 . . . Machine Learning Showcase North Hall

2:00-3:30 PM

Corporate Symposium

2:30-4:00 PM

Educational Courses

3:00-4:00 PM

Scientific Papers Sessions

Physics (Image Reconstruction)

4:30-6:00 PM

Educational Courses

Mini-course: Image Interpretation Science - Computational Perception

Course RC425......S103AB

Deep Learning-An Imaging Roadmap

Course RC453......E451B

WEDNESDAY, NOV 28, 2018

7:15-8:15 AM

Educational Courses

8:30 AM-4:00 PM

Demonstrations

RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute

Session Al001-WE Al Community, Learning Center

8:30-10:00 AM

Educational Courses

Deep Learning: Applying Machine Learning to Multidisciplinary Precision Medicine Data Sets

Course RC553......E451B

9:00-10:30 AM

Corporate Symposium

Medical Imaging Analytics & Al: Technologies and Solutions for Better Healthcare Today and in the Future: Presented by Intel®

10:30 AM-12:00 PM

Educational Courses

From Texture Analysis to Deep Learning for Lesion Characterization (Hands-on)

10:30 AM-12:00 PM

Scientific Papers Sessions

Breast Imaging (Artificial Intelligence)

Physics (CT: Image Quality)

11:00-11:20 AM

Showcase Presentations

Machine Learning Theater: The Curated Marketplace - A New Platform Approach: Presented by Blackford

Session ML41 . . . Machine Learning Showcase North Hall

11:30-11:50 AM

Showcase Presentations

Machine Learning Theater: Al-driven Mammography: Applying the Right Filter: Presented by Densitas, Inc.

Session ML42 . . . Machine Learning Showcase North Hall

12:00-12:20 PM

Showcase Presentations

Machine Learning Theater: From Al-powered Diagnostic Support Tools to Imaging Biomarkers: Aiming for Beyond Human-Level Accuracy: Presented by Lunit, Inc.

Session ML43 . . . Machine Learning Showcase North Hall

12:15-12:45 PM

Posters and Exhibits: Discussions

Artificial Intelligence Wednesday Poster Discussions
Session AIS-WEA...... AI Community, Learning Center

12:30-2:00 PM

Educational Courses

AI, Radiomics, Text Mining, and More: 2018's Key Advances in Imaging Informatics

12:30-1:30 PM

Lunch and Learns

Lunch and Learn: Breaking New Ground: Using AI at Scale Across a Global Imaging Network to Minimize Diagnostic Interpretation Risk: Presented by lifeIMAGE (invite-only)

Session LL31......S404AB

Lunch and Learn: How Artificial Intelligence is Changing Medical Imaging: Presented by Konica Minolta Healthcare (invite-only)

Lunch and Learn: Thinking Faster, Safer, & Smarter: How You Can Use AI to improve MR and PET Imaging Efficiency, Patient Satisfaction, and Safety: Presented by Subtle Medical (invite-only)

12:30-12:50 PM

Showcase Presentations

Machine Learning Theater: Al for Medical Image Diagnosis: Presented by LPixel, Inc.

Session ML44 . . . Machine Learning Showcase North Hall

12:45-1:15 PM

Posters and Exhibits: Discussions

Artificial Intelligence Wednesday Poster Discussions

Session AIS-WEB Al Community, Learning Center

1:30-1:50 PM

Showcase Presentations

Machine Learning Theater: AI Empowering Medical Data: Presented by Hangzhou YITU Healthcare Technology Co., Ltd Session ML46...Machine Learning Showcase North Hall

2:30-4:00 PM Educational Courses Advanced Al Tools for Radiologist-driven Mining of Imaging and Hospital-based Data Sets for Developing and Testing Hypothesis from Clinical Practice (Hands-on) Course RCA44
3:00-4:00 PM
Scientific Papers Sessions Science Session with Keynote: Breast Imaging (Risk-Based Screening: Should We Do It?) Session SSM02. E350
Cardiac (Anatomy) Session SSM03
Gastrointestinal (Gallbladder and Bile Ducts) Session SSM09S503AB
Radiation Oncology (Genitourinary) Session SSM22E261
THURSDAY, NOV 29, 2018 8:30 AM-4:00 PM Demonstrations
RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute Session Al001-THAl Community, Learning Center
8:30-10:00 AM
Educational Courses The Impact of Artificial Intelligence on Radiology Training and Practice Around the World (Sponsored by RSNA Committee of International Radiology Education) Course RC616
Mini-course: Radiation Safety for Patients and Staff - Emerging Advances in Patient Radiation Protection Course RC625
Machine Learning and Artificial Intelligence: The Non-Interpretive Considerations Course RC653E450A
10:30-12:00 PM
Educational Courses Novel Discoveries Using the NCI's Cancer Imaging Archive (TCIA) Public Data Sets
Course RCC52S501ABC

10:30 AM-12:00 PM

Scientific Papers Sessions

11:00-11:20 AM

Showcase Presentations

Machine Learning Theater: Programming Clinical AI with Simulation: Presented by Riverain Technologies

Session ML51 ... Machine Learning Showcase North Hall

11:30-11:50 AM

Showcase Presentations

Machine Learning Theater: From Artificial Intelligence to Augmented Intelligence: The Role of Medical Imaging in Diagnosis: Presented by Shenzhen Imsight Medical Technology Co., Ltd

Session ML52 . . . Machine Learning Showcase North Hall

12:00-12:20 PM

Showcase Presentations

Machine Learning Theater: State-of-the-art Deep Learning for Breast Cancer Screening: Presented by Kheiron Medical Technologies

Session ML53 . . . Machine Learning Showcase North Hall

12:15-12:45 PM

Posters and Exhibits: Discussions

Artificial Intelligence Thursday Poster Discussions

Session AIS-THA Al Community, Learning Center

12:30-2:00 PM

Educational Courses

12:30-12:50 PM

Showcase Presentations

Machine Learning Theater: Towards Intelligent Healthcare: Presented by NVIDIA

Session ML54 . . . Machine Learning Showcase North Hall

12:45-1:15 PM

Posters and Exhibits: Discussions

Artificial Intelligence Thursday Poster Discussions

Session AIS-THB AI Community, Learning Center

1:00-1:20 PM

Showcase Presentations

Machine Learning Theater: SOPHiA Radiomics-Integration of Imaging, Genomic and Clinical Data to Support Decision Making in Oncology: Presented by SOPHiA Genetics

Session ML55 . . . Machine Learning Showcase North Hall

1:30-1:50 PM

Showcase Presentations

Machine Learning Theater: DEEP:PHI, Medical Image Al Platform: Presented by DEEPNOID

Session ML56 . . . Machine Learning Showcase North Hall

3:00-4:00 PM

Educational Courses

Hot Topic Session: Biomarker and Personalized Medicine in Lung Cancer Imaging

Session SPSH52..... E350

4:30-6:00 PM

Educational Courses

Machine Learning for Radiotherapy Applications

The Human Side of Artificial Intelligence

Platforms and Infrastructures for Accelerated Discoveries in Machine Learning and Radiomics

Course RC753......E451A

FRIDAY, NOV 30, 2018 8:30 AM-12:00 PM

0.30 AM-12.00

Demonstrations

RSNA Deep Learning Classroom: Presented by NVIDIA Deep Learning Institute

Session Al001-FR..... Al Community, Learning Center

Posters and Exhibits Discussions

(CME is available when the author is present for discussion during the lunch period)

alscussion auring the lunch perioa)
SUNDAY, NOV 25, 2018 12:30-1:00 PM Scientific Posters
Deep Learning Based Radiomics and Its Usage in Prediction for Metastatic Colorectal Cancer GI332-SD-SUA5
Effect of Inter-Observer Variability on Deep Learning in Chest X-Rays Al200-SD-SUA1
Machine Learning Based CT-FFR Integrating With Quantitative Myocardial Mass Subtended By Coronary Stenosis Outperforms Plaque Features for Predicting Hemodynamical Significance of Lesions CA204-SD-SUA5
Using Deep Learning to Predict Emphysema in Early Lung Cancer Screening Low-Dose CT Scan CH259-SD-SUA4
12:30 – 1:00 PM Education Exhibits Deep Learning-Based Texture Classification for Similar CT Image Retrieval AI152-ED-SUA2
Real Time Detection and Labeling of Image Objects: YOLO (You Only Look Once), A Case Study (with Pitfalls) in Training and Running a Deep Network to Detect and Label Objects AI023-EC-SUA Custom Application Computer Demonstration
1:00-1:30 PM
Scientific Posters
Automated Foreign Object Detection in Chest X-Ray Images Based on Deep Learning AI201-SD-SUB1
Context-Guided Deep Learning Framework for Skull Stripping NR368-SD-SUB1Station #1
CT Texture Analysis for the Prediction of KRAS Mutation Status in Colorectal Cancer via a Machine Learning Approach

GI334-SD-SUB2 Station #2

Detection and Phenotyping of Emphysema Using a New Machine Learning Method
CH263-SD-SUB4 Station #4
Diagnosis of Transition Zone Prostate Cancer (TZ PCa): Logistic Regression and Machine Learning Models of Quantitative ADC, Shape and Texture Features Improves Accuracy Compared to Subjective Evaluation with PI-RADSv2 GU206-SD-SUB2
Prediction of Parkinson's Disease by Using Deep Learning 3D-Convolutional Neural Networks NR369-SD-SUB2
Superiority of Artificial Intelligence over Radiologists in Detecting Pulmonary Nodules CH261-SD-SUB2
1:00-1:30 PM
Education Exhibits Application of Deep Learning Object Detection for CT Scout Localizer-based Clinical Scan Region Planning
PH008-EB-SUB Hardcopy Backboard
Deep Learning for Discovery of Latent Information in Contrast Free Cardiac CT Images Al025-EB-SUB
Deep Learning in Pulmonary Nodule Detection and Classification Using Images of Digital Radiography
CH240-ED-SUB6 Station #6
MONDAY, NOV 26, 2018
12:15-12:45 PM
Scientific Posters Automatic Contrast Enhancement Detection on Head CT Al202-SD-MOA1Station #1
Prostate Cancer Lesion Segmentation and Gleason Score Prediction Using Multi-parametric MRI via Deep Residual Neural Network
Al203-SD-MOA4 Station #4
Semi-Automatic RECIST Labeling on CT Scans with Cascaded Convolutional Neural Networks Al204-SD-MOA6. Station #6
12:15–12:45 PM
Education Exhibits Abdominal Segmentation for Body Compositoin Using Deep-Learning U-Net
Al027-EB-MOA Hardcopy Backboard

An Artificial Intelligence-Based System for Triaging of Digital Mammography Exams AI026-EB-MOA
Deep Learning Techniques for Automated Segmentation of Diffuse Lung Disease Opacities on CT Images Al143-ED-MOA5
12:45-1:15 PM Scientific Posters
3D Context Enhanced Region-based Convolutional Neural Network for Universal Lesion Detection in a Large Database of 32,735 Manually Measured Lesions on Body CT
Al208-SD-MOB3 Station #3
Application of Machine Learning to Infer Ultrasound LI-RADS Categories across Multi-Institutional Radiology Reports GI351-SD-MOB5
Improving Radiology Appointment Wait Time Prediction with Machine Learning
Al206-SD-MOB2 Station #2
Machine Learning-Based Analysis of MRI Radiomics: Pathological Classification and Clinical Staging Prediction of Thymic Epithelial Tumors CH270-SD-MOB2
Recognition of Pediatric Long-Bone Fractures in the Setting of Variable Open Growth Plates by Convolutional Neural Networks
Al209-SD-MOB4 Station #4
Solid Renal Tumor Detection Using Convolutional Neural Networks
Al205-SD-MOB1
TUESDAY, NOV 27, 2018
12:15-12:45 PM
Scientific Posters
Automated CT and MR Liver Biometry Using a Generalized Convolutional Neural Network for Liver Segmentation GI360-SD-TUA6
Automatic Femoral Neck Fracture Detection and Classification
Utilizing Advanced Deep Learning Techniques MK370-SD-TUA1
Automatic Segmentation for Pulmonary Pure Ground-Glass Nodules from Follow-Up CT Scans Using Recurrent Convolutional Neural Networks
CH277-SD-TUA4 Station #4
Deep Learning Approach for Image Denoising in Low-Dose CT PH225-SD-TUA1

Deep Learning for Automatic Detection and Segmentation of Acute Epidural and Subdural Hematomas in Head CT NR390-SD-TUA1
Deep Learning-Enabled Normalization of Reconstruction Kernel-Induced Variability of Emphysema Index in Low-Dose Lung CT
IN211-SD-TUA2 Station #2
Fast, Robust and Accurate Segmentation of the Complete Cerebral Vasculature in 4D-CTA Using Deep Learning NR397-SD-TUA7 Station #7
Machine Learning Based Radiomics for Glial Tumor Classification
NR398-SD-TUA8 Station #8
Performance of Various Machine Learning Methods in CT Texture Analysis to Differentiate Lung Cancer from Benign Nodule with Small Ground-Glass Opacity Nodules CH275-SD-TUA2
Synthetic PET Generator: A Novel Method to Improve Lung Nodule Detection by Combining Outputs from a Pix2pix Conditional Adversarial Network and a Convolutional Neural Network Based Malignancy Probability Estimator Al213-SD-TUA2
Transfer-Learning for Imaging-Based Lung Cancer
Stratification
AI212-SD-TUA1 Station #1
AI212-SD-TUA1 Station #1 12:45-1:15 PM
12:45–1:15 PM Scientific Posters Deep Learning for Detection of Hip, Knee, and Shoulder Arthroplasty Dislocations and "Transfer Learning" to Native Joint Dislocations MK380-SD-TUB4
12:45–1:15 PM Scientific Posters Deep Learning for Detection of Hip, Knee, and Shoulder Arthroplasty Dislocations and "Transfer Learning" to Native Joint Dislocations MK380-SD-TUB4 Station #4 Determination of Musculoskeletal Magnetic Resonance Imaging Protocol between Routine Protocol and Radiologist- Tailored Protocol Using Deep-learning Convolutional Neural Networks MK379-SD-TUB3. Station #3
12:45–1:15 PM Scientific Posters Deep Learning for Detection of Hip, Knee, and Shoulder Arthroplasty Dislocations and "Transfer Learning" to Native Joint Dislocations MK380-SD-TUB4
12:45–1:15 PM Scientific Posters Deep Learning for Detection of Hip, Knee, and Shoulder Arthroplasty Dislocations and "Transfer Learning" to Native Joint Dislocations MK380-SD-TUB4 Station #4 Determination of Musculoskeletal Magnetic Resonance Imaging Protocol between Routine Protocol and Radiologist- Tailored Protocol Using Deep-learning Convolutional Neural Networks MK379-SD-TUB3.Station #3 Development and Validation of a Deep Learning Model For More Accurate and Consistent Assessment of MRI Background Parenchymal Enhancement
12:45–1:15 PM Scientific Posters Deep Learning for Detection of Hip, Knee, and Shoulder Arthroplasty Dislocations and "Transfer Learning" to Native Joint Dislocations MK380-SD-TUB4 Station #4 Determination of Musculoskeletal Magnetic Resonance Imaging Protocol between Routine Protocol and Radiologist- Tailored Protocol Using Deep-learning Convolutional Neural Networks MK379-SD-TUB3.Station #3 Development and Validation of a Deep Learning Model For More Accurate and Consistent Assessment of MRI Background Parenchymal Enhancement BR251-SD-TUB5.Station #5 Diagnosis of Triple Negative Breast Cancer Using Machine Learning Methods of Quantitative Computerized Ultrasound Features

Impact of Deep Learning-based CT Denoising on Normal Anatomical Structures in Low Dose Chest CT : FBP vs IRT vs Deep Learning
AI215-SD-TUB1 Station #1
Influence of Readers' Experience on the Classification Performances of the Deep Neural Network (DNN) for Classifying Myocardial Delayed Enhancement on Cardiac MRI CA231-SD-TUB1
Machine Learning for Identifying the Value of Digital Breast Tomosynthesis using Data from a Multicentre Retrospective Study Al216-SD-TUB2
Patient Data Adapted Deep Learning for Multi-Label Chest X-Ray Classification Al218-SD-TUB3
Predicting Pathological Noninvasiveness in T1 Non-Small Cell Lung Cancer on Chest CT Scan Using Deep Learning Algorithm
CH281-SD-TUB3 Station #3
Validation of Deep Learning Technique for Quantification of Cardiac Left Ventricle
CA232-SD-TUB2 Station #2
HIEDNESDOU NOV 20 2010
WEDNESDAY, NOV 28, 2018
WEDNESDAY, NOV 28, 2018 12:15–12:45 PM Scientific Posters Artificial Intelligence in Bone Age Assessment: Evaluation of Diagnostic Accuracy and Efficiency of a Novel Fully Automated Algorithm in Comparison to the Greulich Pyle Atlas Method PD234-SD-WEA5
12:15 – 12:45 PM Scientific Posters Artificial Intelligence in Bone Age Assessment: Evaluation of Diagnostic Accuracy and Efficiency of a Novel Fully Automated Algorithm in Comparison to the Greulich Pyle Atlas Method
12:15 – 12:45 PM Scientific Posters Artificial Intelligence in Bone Age Assessment: Evaluation of Diagnostic Accuracy and Efficiency of a Novel Fully Automated Algorithm in Comparison to the Greulich Pyle Atlas Method PD234-SD-WEA5 Station #5 Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset
12:15 – 12:45 PM Scientific Posters Artificial Intelligence in Bone Age Assessment: Evaluation of Diagnostic Accuracy and Efficiency of a Novel Fully Automated Algorithm in Comparison to the Greulich Pyle Atlas Method PD234-SD-WEA5 Station #5 Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset BR259-SD-WEA6 Station #6 Deep Learning for Acute Ischemic Stroke on Diffusion-Weighted MR Imaging

Patient and Tumor Characteristics to Predict the Benefit of Pre-Operative Breast MRI: Results from a Machine Learning Approach at a High Volume Academic Center BR255-SD-WEA2
Radiologists versus Deep Learning Model Inter-Observer Variability in Mammographic Breast Density Assessment BR258-SD-WEA5
12:15 – 12:45 PM Education Exhibits "Virtual" High-Dose Technology: Radiation Dose Reduction in Thin-Slice Chest CT at a Micro-Dose (mD) Level by Means of 3D Deep Neural Network Convolution (NNC) Al146-ED-WEA1 Station #1
12:45–1:15 PM
Scientific Posters Automated Cardiac MR Plane Classification Using VGG-19 Convolutional Neural Network: A Deep Learning Study CA249-SD-WEB5
CT Head Intracranial Hemorrhage Detection with Deep Learning: Experience with 9 Million Images NR417-SD-WEB1 Station #1
Detection of Pacemaker and Determination of MRI-conditional Pacemaker Based on Deep-learning Convolutional Neural Networks to improve the Patients' MRI Safety IN227-SD-WEB3
Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs CH295-SD-WEB6
Employing Artificial Intelligence to Predict Hematocrit Values from Non-Contrast CT Imaging Data—Towards Fully Automated CT-derived Myocardial Extracellular Volume Fraction Quantification CA250-SD-WEB6
Lung Nodule Detection Performance Using a Deep Convolutional Neural Network Model Using Wide Detector Spectral Ct Monochromatic Imaging? A Preliminary Phantom Study CH291-SD-WEB2
Patient Identification on Chest X-Ray Using Artificial Intelligence IN226-SD-WEB2
Potential of Deep Learning and Conventional Radiomics in the Task of Distinguishing Between Malignant and Benign Breast Lesions in a Large Clinical MRI Dataset from China BR265-SD-WEB5 Station #5

2:45–1:15 PM ducation Exhibits uality Assurance for Crowdsource Annotation of the nestX-ray 14 Dataset for the RSNA-STR Machine Lear nallenge: How We Did It I149-ED-WEB1 State	
HURSDAY, NOV 29, 2018 2:15–12:45 PM cientific Posters irtual" Full-Dose (VFD) Technology: Radiation Dose eduction in Digital Breast Tomosynthesis (DBT) by Me eural Network Convolution (NNC) Deep Learning R275-SD-THA3	
utomatic Generation of Synthesized Perfusion Maps froultimodal MRI using a Deep Neural Network based Lecheme: A First Step Towards Quantification of Ktrans, ermeability, and Susceptibility Artifacts R428-SD-THA3Stat	arning
arkerless Tumor Tracking for Hepatocellular Carcinon sing Fluoroscopic Imaging with a Deep Neural Networ I231-SD-THA2	rk ion #2
eep Learning in Panoramic Radiography 1232-SD-THA3 Stat	
upport Vector Machine Model for Stratification of Live tiffness using Clinical Data 1230-SD-THA1Stat	
tilization of Bone Suppression Imaging by Using Deep earning on Chest Radiograph: Detectability of Lung No nd Exploring for Effectual Interpretation Methods H297-SD-THA2Stat	dules
2:15–12:45 PM ducation Exhibits merging Approaches for Applying Artificial Intelligence euroradiology I150-ED-THA4	
2:45-1:15 PM cientific Posters T Image Enhancement for Lesion Segmentation Using tacked Generative Adversarial Networks 12:34-SD-THB1	tion #1

Machine Learning to Evaluate Atherosclerotic Plaque Composition by Coronary CT: Validation with IB-IVUS
CA257-SD-THB1 Station #1
12:45-1:15 PM Education Exhibits
A Two-Stage Deep-Learning Scheme for Reducing Radiation Dose in Digital Breast Tomosynthesis (DBT) AI151-ED-THB2Station #2
Anatomical Borderline Structure Detection in Chest X-Ray by Deep Neural Networks
AI024-EC-THB Custom Application Computer Demonstration
DeepGrow – A General-Purpose and Interactive Segmentation Tool Based on Deep Learning
IN008-EC-THB Custom Application Computer

Demonstration

Education Exhibits

SPACE NO.	EXHIBIT TITLE
AI021-EC-X	Methodology to Curate and Crowdsource Annotation of the ChestX-ray14 Dataset for the RSNA-STR Machine Learning Challenge: How We Did It
AI022-EC-X	The Next Step in Electronic Cleansing for CT Colonography: Unsupervised Machine Learning
BR112-ED-X	Preparation of Digital Mammograms for the Application of Deep Learning Algorithms
CA155-ED-X	Cardiac Image Analysis with Deep Learning Methods
IN100-ED-X	Robotic Process Automation: Go Beyond Artificial Intelligence in the Radiology Department
IN101-ED-X	Optimization of Imaging Parameters for Use in Medical Imaging Using the Deep Learning Technique
IN102-ED-X	Artificial Intelligence Use in Radiology: Development, Current Use, and Present-Day Controversies
IN104-ED-X	Automated Construction of the Optimal Structure for 3D CNN by Using the Bayesian Optimazation
IN107-ED-X	Data Enhancement of Deep Learning for Medical Image Analysis: How Do We Increase Precisely Labeled Training Images?
IN111-ED-X	Machine Learning: Solutions to Shortcomings
IN113-ED-X	Machine Learning: A Theoretical Stepwise Premier for Radiologists
IN116-ED-X	3-Minute Recipe for Deep Learning: Principle, Hardware, and Software
IN117-ED-X	What Radiologists Should Learn about Machine Learning?
IN119-ED-X	The Artificial Intelligence Journal Club: A Multi-Institutional Resident-Driven Web-Based Educational Initiative
IN120-ED-X	Historical Overview of Machine Learning (ML) and Deep Learning in Medical Image Analysis - What are the Sources of the

Power of Deep Learning?

IN121-ED-X	Seeing Through the Eyes (and Visual Cortex) of a Machine: Convolutional Neural Networks at the Forefront of Machine Intelligence in Medical Imaging
IN122-ED-X	Concepts in Artificial Intelligence: A Primer for Radiologists
IN123-ED-X	Hands-On Machine Learning for Difussion Tensor Imaging Assessment: From Theory to Practice
IN124-ED-X	Artificial Intelligence Using Neural Network Architecture for Radiology (AINNAR): The Decoding of the Technical Terms in AI
IN126-ED-X	Practical Guide to Using PyTorch for Deep Learning Based Image Segmentation in Radiology
IN127-ED-X	Case Based Approach to Image Classification with PyTorch: a Primer for Novice Machine Learning Practitioners
IN129-ED-X	Application of Deep Learning to Pancreatic Imaging - The Radiologists' Perspective
IN131-ED-X	Decentralized Deep Learning on a Blockchain
IN132-ED-X	Supervised vs. Unsupervised Machine Learning for Radiologists in a Nutshell
IN133-ED-X	Artificial Intelligence for the Average Intelligence: A Practical Guide
IN137-ED-X	Virtual Radiologists: Current Status of Deep Learning in Radiology and Its Future Trends
IN138-ED-X	Strengths, Weakness, Opportunities and Threats: SWOT Analysis of Machine Learning for Radiology Applications
PH100-ED-X	Does Deep Learning Help in Diagnosis of Hyperacute Stroke in Noncontrast CT?
PH110-ED-X	Possibility of Deep Learning Technique in Medical Imaging: Can Deep Learning Improve Image Quality?
PH117-ED-X	Optimization Method of Hyper- Parameters in Convolutional Neural Network for Medical Image Application
VI109-ED-X	Artificial Intelligence and Interventional Radiology: Current Status, Future Applications, and Related Controversies

Demonstrations

(All Demonstrations will occur in the Al Community, Learning Center)

SESSION	DESCRIPTION
AI002-EB	A Deep Learning Framework for Radiotherapy Delivery in Thoracic Oncology
AI003-EB	Ultra Low Dose PET/MRI Imaging of Crohn's Disease Using a Novel Deep Learning Reconstruction Method
AI004-EB	Development and Visual Assessment of a Deep Learning System for Automated Tuberculosis Screening Using Chest Radiographs
AI005-EB	Automated Detection and Localization of Large Vessel Occlusion on CTA of the Head Using Deep Learning Systems
Al006-EB	Radiomic Modeling to Predict Risk of Vertebral Compression Fracture After Stereotactic Body Radiation Therapy for Spinal Metastases
AI007-EB	Artificial Intelligence-Assisted Automated Detection and Outcome Prediction of Subarachnoid Hemorrhage: Techniques and Educational Approaches
AI008-EB	Machine Learning to Predict Risk of Upgrade and Recurrence of Ductal Carcinoma In Situ
AI009-EB	Machine Learning-based Virtual Metastasis Biopsy as an Early Predictor of Tumor Progression and Resistance Mutation Acquisition in Colon Cancer Patients
AI010-EB	Deep Learning on CT Angiogram to Aid in the Detection of Emergent Large Vessel Occlusion
AI011-EB	Segmentation and Quantitative Assessment of Prognostic Features in Type B Aortic Dissection Using Machine Learning
AI012-EB	Automated Liver Biometry and Fat Quantification in Non-alcoholic Fatty Liver

Disease with Convolutional Neural

Networks

Al013-EB A Deep Learning Approach for Identifying

Imaging Biomarkers and Outcome Modeling in Chronic Obstructive

Pulmonary Disease

Al014-EB Deep Learning for Radiological Image

Quality Improvement: Impact on the Accuracy of Diagnosis and Organ

Segmentation

AI015-EB Combining Genomic and Clinical/

Dosimetric Variables to Predict Radiation Toxicity in Localized Prostate Cancer Patients Via Computational Genomics and

Machine Learning

Al016-EB Detection of Obstructive and Restrictive

Lung Disease on Chest Radiography Using Machine Learning and Integrated

Pulmonary Function Data

Al017-EB Radiogenomics of Diffuse Cerebral

Gliomas

AI018-EB Utilization of Deep Learning to Predict

Characteristics and Treatment Response

in Renal Tumors

Al030-EB Crowds Cure Cancer: Help Annotate Data

from the Cancer Imaging Archive

Machine Learning Showcase Exhibitors

COMPANY	BOOTH NO.
12 Sigma Technologies	7764
A.I. Analysis Inc	8164
Aidence B.V.	6373
Aidoc Medical Ltd	6561
AIExplore/NTUST	6173
American College of Radiology	7373
ARTERYS	7964
Balzano Informatik AG	6066
BEIJING DEEPWISE & LEAGUE OF PHD TECHNOLOGY CO LTD	7773
Blackford Analysis	7364
Bold Brain Ventures	6072
Caide Systems Inc	6061
Combinostics	7367M
Contextflow Gmbh	7367N
Coreline Soft Co Ltd	7367V
Cortechs Labs Inc	7367X
CuraCloud Corporation	7770
CureMetrix Inc	7961
Dai Nippon Printing Co Ltd	6273
DEEPNOID	6964
DEEPRADIOLOGY	6761
Densitas Inc	7367W
DiA Imaging Analysis	8168
Enlitic Inc	7367Q
EnvoyAl	7367A
Fovia Inc	6064
Fraunhofer MEVIS	6068
Galileo CDS Inc	6673
GE Healthcare	8169

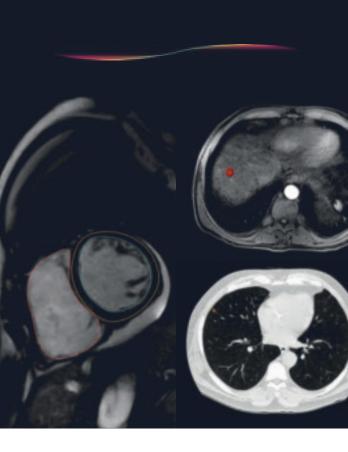
Powering imaging innovation with machine learning.

See how Google Cloud is applying intelligence to imaging.

Visit us in the Machine Learning Showcase Booth #7161. North Hall.

Google Cloud

Google Cloud	7161
Hangzhou YITU Healthcare Technology Co LTD	6564
Hangzhou YITU Healthcare Technology Co LTD	7367L
HealthMyne	7761
HeartFlow, Inc	6961
HeartVista Inc	7971
Huiying Medical Technology Co Ltd	6370
iCAD, Inc	8161
icometrix nv	7367P
ImageBiopsy Lab (IB Lab GmbH)	7367R
Imbio LLC	7565
Infervision	7367K
Kheiron Medical Technologies Ltd	6366
Koios Medical	6973
LPixel Inc	7573
Lunit Inc	7561
MaxQ-AI	6161
Medaphor	8165
MEDEXPRIM	7367Z
Median Technologies	7064
Medstreaming	7164
Mindshare Medical	8172
NEC Corporation	7968
Nuance Communications	7367F
NVIDIA	6568
OneMedNet Corporation	7367T
Philips	6573
Pure Storage	6070
QMENTA	7665
Quantib BV	7367H
Quantitative Insights	8170
QUIBIM S.L.	7367G
Qure.ai	7564
RAD AI	6164
Radisen	6062


RadLogics	6361
Riverain Technologies	7367J
RSNA Informatics	7367E
Shenzhen Imsight Information Technology Co Ltd	6170
Siemens Healthineers	7367U
Smart Reporting GmbH	7367B
Society of Artificial Intelligence in Medicine & Healthcare	6873
SOPHIA GENETICS	6071
Subtle Medical Inc	6773
THERAPIXEL	7367S
Thirona	8162
TOMTEC CORPORATION	7367C
United Imaging Intelligence	6167
VIDA	6065
Vuno	7767
Zebra Medical Vision Ltd	7361

Exhibitor listing as of 10/15/18.

Powerfully simple solutions

LUNG AI CARDIO AI LIVER AI

INNOVATION FOR TOMORROW'S RADIOLOGY TODAY

Visit the Machine Learning Showcase

Sponsored by:

Don't miss this exciting centerpiece of the North Exhibit Hall! See the latest developments in ML and AI software and products. Plus, learn even more about this game-changing technology at the Machine Learning Theater featuring daily lunchtime presentations on the latest hot topics.

